News Picture Generic

Complex Trait Analysis of Human Gut Microbiome-Active Traits in Sorghum bicolor: a new category of human health traits in food crops

June 29, 2022

Nature Portfolio Journal

Several bioactive components of the human diet have major effects on composition and function of the gut microbiome, but no systematic framework exists for understanding variation in microbiome-active components amid the vast amount of genotypic and phenotypic variation within a given species of food crop. Here we present a powerful new approach for complex trait analysis of Microbiome-Active Traits (MATs) in food crops. Capitalizing on a novel automated in vitro microbiome screening (AiMS) methodology to quantify human gut microbiome phenotypes after fermentation of grain from genetically diverse lines, we show how microbiome phenotypes can be used as quantitative traits for genetic analysis. Quantitative Trait Locus (QTL) analysis of AiMS-based phenotypes across grain samples from 294 sorghum (Sorghum bicolor) recombinant inbred lines identified significant QTLs at 10 different genomic regions that collectively control MATs affecting 16 different microbial taxa. Segregation analysis and validation in Near-Isogenic Lines (NILs) confirmed that overlapping QTL peaks for microbiome phenotypes, seed color, and tannin concentration are driven by variation in the Tan2 (chromosome 2) and Tan1 (chromosome 4) regulators of the tannin biosynthetic pathway. Candidate genes at other QTLs suggest that variation in a diverse array of plant molecules can drive MATs.

For details: 

Complex Trait Analysis of Human Gut Microbiome-Active Traits in Sorghum bicolor: a new category of human health traits in food crops

Qinnan Yang 1,2, Mallory Van Haute 1,2, Nate Korth 2,3, Scott E. Sattler 4,5, John Toy 4,5, Devin Rose 1,2,5, James C. Schnable 2,5,6, and Andrew K. Benson 1,2

{"style":"ordered","items":[{"content":"Department of Food Science and Technology, University of Nebraska","items":[]},{"content":"Nebraska Food for Health Center, University of Nebraska","items":[]},{"content":"Complex Biosystems Graduate Program, University of Nebraska","items":[]},{"content":"Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE","items":[]},{"content":"Department of Agronomy and Horticulture, University of Nebraska","items":[]},{"content":"Center for Plant Science Innovation, University of Nebraska ","items":[]}]}

Nature Portfolio Journal
10.21203/rs.3.rs-1490527/v1

For more information about Chemspeed solutions:

FLEX POWDERDOSE

SWING POWDERDOSE

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025