News Picture Generic

Complex Trait Analysis of Human Gut Microbiome-Active Traits in Sorghum bicolor: a new category of human health traits in food crops

June 29, 2022

Nature Portfolio Journal

Several bioactive components of the human diet have major effects on composition and function of the gut microbiome, but no systematic framework exists for understanding variation in microbiome-active components amid the vast amount of genotypic and phenotypic variation within a given species of food crop. Here we present a powerful new approach for complex trait analysis of Microbiome-Active Traits (MATs) in food crops. Capitalizing on a novel automated in vitro microbiome screening (AiMS) methodology to quantify human gut microbiome phenotypes after fermentation of grain from genetically diverse lines, we show how microbiome phenotypes can be used as quantitative traits for genetic analysis. Quantitative Trait Locus (QTL) analysis of AiMS-based phenotypes across grain samples from 294 sorghum (Sorghum bicolor) recombinant inbred lines identified significant QTLs at 10 different genomic regions that collectively control MATs affecting 16 different microbial taxa. Segregation analysis and validation in Near-Isogenic Lines (NILs) confirmed that overlapping QTL peaks for microbiome phenotypes, seed color, and tannin concentration are driven by variation in the Tan2 (chromosome 2) and Tan1 (chromosome 4) regulators of the tannin biosynthetic pathway. Candidate genes at other QTLs suggest that variation in a diverse array of plant molecules can drive MATs.

For details: 

Complex Trait Analysis of Human Gut Microbiome-Active Traits in Sorghum bicolor: a new category of human health traits in food crops

Qinnan Yang 1,2, Mallory Van Haute 1,2, Nate Korth 2,3, Scott E. Sattler 4,5, John Toy 4,5, Devin Rose 1,2,5, James C. Schnable 2,5,6, and Andrew K. Benson 1,2

  1. Department of Food Science and Technology, University of Nebraska
  2. Nebraska Food for Health Center, University of Nebraska
  3. Complex Biosystems Graduate Program, University of Nebraska
  4. Wheat, Sorghum and Forage Research Unit, USDA-ARS, Lincoln, NE
  5. Department of Agronomy and Horticulture, University of Nebraska
  6. Center for Plant Science Innovation, University of Nebraska 

Nature Portfolio Journal
10.21203/rs.3.rs-1490527/v1

For more information about Chemspeed solutions:

FLEX POWDERDOSE

SWING POWDERDOSE

SWING SP

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

Read more about Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage
News Picture 1 1 V2
Featured
Jan
30

Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage

VDI news / nachrichten

Up to 220 paint samples per day go through a fully automated screening in a unique testing facility at Byk in Wesel. / Bis zu 220 Lackproben pro Tag durchlaufen ein vollautomatisches Screening in einer weltweit einmaligen Pruefanlage bei Byk in Wesel.

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

© Chemspeed Technologies 2026