News Picture Generic

Harnessing the Power of C-H Functionalization Chemistry to Accelerate Drug Discovery

March 5, 2024
Featured Article

Synlett

The field of C-H functionalization chemistry has experienced rapid growth in the past twenty years, with increasingly powerful applications in organic synthesis. Recognizing the potential of this emerging field to impact drug discovery, a dedicated effort was established in our laboratories more than ten years ago with a goal of facilitating the application of C-H functionalization chemistries to active medicinal chemistry programs. Our approach centered around the strategy of Late-Stage Functionalization (LSF) wherein C−H functionalization chemistry is employed in a systematic and targeted manner to generate high-value analogs from advanced drug leads. To successfully realize this approach, we developed broadly useful LSF chemistry platforms and workflows that increased the success rates of the C- H functionalization chemistries and accelerated access to new derivatives. The LSF strategy, when properly applied, enabled rapid synthesis of molecules designed to address specific medicinal chemistry issues. Several case studies are presented along with descriptions of the group’s platforms and workflows.

For details

Harnessing the Power of C-H Functionalization Chemistry to Accelerate Drug Discovery

Bing Li a, Sriram Tyagarajan a, Kevin D. Dykstra a, Tim Cernak b, Petr Vachal a, Shane W. Krska a

a. Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ 07065, USA

b. Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109 USA

For more information about the used Chemspeed solutions:

FLEX ISYNTH

ISYNTH

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets
News Picture 1 1 V2
Featured
Feb
3

Toward fully autonomous closed-loop molecular discovery – A case study on JAK targets

Bridging AI and self-driving laboratories, we introduce the first fully-automated, closed-loop molecular discovery cycle, exemplified by the identification of novel JAK inhibitors. With minimal human intervention, we combined AI-driven molecular design and retrosynthesis with IBM’s synthesis automation system RoboRXN and Arctoris’ Ulysses platform for automated in-vitro screening.

Read more about Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage
News Picture 1 1 V2
Featured
Jan
30

Altana tests coatings for the industry in a unique high-throughput facility worldwide / Altana testet Lacke fuer die Industrie in weltweit einmaliger Hochdurchsatzanlage

VDI news / nachrichten

Up to 220 paint samples per day go through a fully automated screening in a unique testing facility at Byk in Wesel. / Bis zu 220 Lackproben pro Tag durchlaufen ein vollautomatisches Screening in einer weltweit einmaligen Pruefanlage bei Byk in Wesel.

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

© Chemspeed Technologies 2026