News Picture Generic

Microstructure characteristics of non-monodisperse quantum dots: On the potential of transmission electron microscopy combined with X-ray diffraction

June 11, 2020

CrystEngComm Journal

Although the concept of quantum confinement was introduced more than thirty years ago, a wide application of the quantum dots is still limited by the fact that monodisperse quantum dots with controlled optoelectronic properties are typically synthesized on a relatively small scale. Larger scale synthesis techniques are usually not able to produce monodisperse nanoparticles yet. In this contribution, we illustrate the capability of the combination of transmission electron microscopy and X-ray diffraction to reveal detailed and scale-bridging information about the complex microstructure of non-monodisperse quantum dots, which is the first step towards a further upscalling of the techniques for production of quantum dots with controlled properties. As a model system, CdSe quantum dots synthesized using an automated robotic hot-injection method at different temperatures were chosen. The combined microstructure analytics revealed the size and shape of the CdSe nanocrystals and the kind, density and arrangement of planar defects. The role of the planar defects in the particle coarsening by oriented attachment and the effect of the planar fault arrangement on the phase constitution, on the crystallographic coherence of the counterparts and on the optoelectronic properties are discussed.

For details: Microstructure characteristics of non-monodisperse quantum dots: On the potential of transmission electron microscopy combined with X-ray diffraction

Stefan Neumann a, Christina Menter b,c, Ahmed Salaheldin Mahmoud b,c, Doris Segets d and David Rafaja a

a Institute of Materials Science, TU Bergakademie Freiberg, Germany

b Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

c Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

d Process Technology for Electrochemical Functional Materials, Institute for Combustion and Gas Dynamics-Reactive Fluids (IVG-RF), and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Germany

For more information about Chemspeed solutions:

AUTOPLANT PRORES

CrystEngComm Journal
DOI: 10.1039/D0CE00312C

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025