News Picture Generic

Modern Machine Learning for Tackling Inverse Problems in Chemistry: Molecular Design to Realization

April 27, 2022
Featured Article

Chemical Communications Journal

The discovery of new molecules and materials helps expand the horizons of novel and innovative real-life applications. In the pursuit of finding molecules with desired properties, chemists have traditionally relied on experimentation and recently on combinatorial methods to generate new substances often complimented by computational methods. The sheer size of the chemical space makes it infeasible to search through all possible molecules exhaustively. This calls for fast and efficient methods to navigate the chemical space to find substances with desired properties. This class of problems is referred to as inverse design problems. There is a variety of inverse problems in chemistry encompassing various subfields like drug discovery, retrosynthesis, structure identification etc. Recent developments in modern machine learning (ML) methods have shown great promise in being able to tackle problems of this kind. This has helped in making major strides in all key phases of molecule discovery ranging from in silico candidate generation to their synthesis with focus on small organic molecules. Optimization techniques like Bayesian optimization, reinforcement learning, attention-based transformers, deep generative models like variational autoencoders and generative adversarial networks form a robust arsenal of methods. This highlight summarizes the development of deep learning to tackle a wide variety of inverse design problems in chemistry towards the quest for synthesizing small organic compounds with purpose.

For details: 

Modern Machine Learning for Tackling Inverse Problems in Chemistry: Molecular Design to Realization

Bhuvanesh Sridharan, Manan Goel and U. Deva Priyakumar

Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India

Chemical Communications Journal
https://doi.org/10.1039/D1CC07035E

For more information about Chemspeed solutions:

FLEX ISYNTH

ISYNTH AI

ISYNTH REACTSCREEN

For details please contact [email protected]

Other Recent News

Discover more news articles you might be interested in

Read more about Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs
News Picture 1 1 V2
Featured
Jan
20

Asymmetric hydrogenation of olefins with transition metal-based catalysts: practical insights from screening to production of APIs

Selective hydrogenation plays a critical role in modern synthetic chemistry, particularly in the pharmaceutical industry, where the production of chiral molecules with high enantiomeric purity is essential for the efficacy and safety of active pharmaceutical ingredients (APIs). 

Read more about Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography
News Picture 1 1 V2
Featured
Jan
6

Automated synthesis and fragment descriptor-based machine learning for retention time prediction in supercritical fluid chromatography

The integration of automated synthesis and machine learning (ML) is transforming analytical chemistry by enabling data-driven approaches to method development. Chromatographic column selection, a critical yet time-consuming step in separation science, stands to benefit substantially from such advances.

© Chemspeed Technologies 2026