News Picture Generic

Rapidly develop novel polyolefin products for local and global use

October 16, 2017

October 2017 - PTT Global Chemical Limited, Rayong, Thailand

Senior Researcher, R&D-Scale-up and Process Technology, states: “It is known that research is a seriously tough job, it e.g. always needs to satisfy the expectation of every people and management level involved. Moreover, it always takes time. Normally, it might take around 10 years from laboratory scale to commercial scale. Besides, in polyolefin research it is more than 60% of the whole journey that falls into lab scale phase. Nowadays, more and more automation is involved and relieves such constraints. Thus, I am very pleased to expand the implementation of high-output research in PTT Global Chemical Limited (Public), Thailand. Chemspeed Technologies has been an excellent company providing us a convincing solution for the highly challenging automated polyolefin catalyst synthesis, catalyst screening, and polymerization testing. I believe that these tools will provide a strategic advantage to our R&D organization in our effort to rapidly develop novel polyolefin products for local and global use. In addition to accelerating and standardizing experimentation, the Chemspeed solution also enables R&D data preservation and evolution in one informatics platform which will help PTTGC researchers to be more productive and innovative.”

For more information about Chemspeed’s polyolefin solutions:

{"style":"unordered","items":[{"content":"ISYNTH POSYCAT","items":[]},{"content":"AUTOPLANT POSYCAT","items":[]},{"content":"AUTOPLANT POSY","items":[]}]}

 

About PTT Global Chemical Limited:

{"style":"unordered","items":[{"content":"PTTGC 's Commitment for Sustainability","items":[]},{"content":"To be a Leading Chemical Company for Better Living","items":[]},{"content":"Better Chemistry for Better Living","items":[]}]}

 

http://www.pttgcgroup.com/en

 

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025