News Picture Generic

Statistically driven automated method for catalytic glucose conversion optimisation

November 12, 2024
Featured Article

RSC Advances

A statistically driven, automated approach to optimize glucose transformations to platform chemicals, methyl lactate and levulinic acid, is reported. The combination of a robotic synthesis platform with design of experiments methods enabled efficient and precise modelling of glucose conversion catalysed by SnCl4·5H2O with 0–100% H2O and methanol as a cosolvent. Using this strategy, optimal reaction conditions within the available reaction space were identified in 58 runs, showcasing the excellent efficiency of this method in producing high yields of methyl lactate (75.9%) and levulinic acid (64.5%) in independent reactions via distinct retro-aldol condensation and dehydration pathways, respectively.

For details

Joseph Install a, Rui Zhang a, Jukka Hietala b and Timo Repo a *

*Corresponding authors

a. Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, Finland

b. Neste Oyj, Technology Centre, Kilpilahti, P.O. Box 310, 06101 Porvoo, Finland

DOI: https://doi.org/10.1039/D4RA06038E

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

Read more about Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements
News Picture 1 1 V2
Featured
Sep
9

Kinetically guided exploration of photocatalytic reactions by combining automation with in situ measurements

Photocatalysis enables valuable reactions such as synthetic transformations or energy conversion processes like water splitting. To rationally improve photocatalytic reactions, mechanistic insights are required. These can be obtained with kinetic measurements, which are, however, difficult to obtain for a large enough number of reaction conditions to provide systematic and valuable insights. 

© Chemspeed Technologies 2025