News Picture Generic

The Dynamic Orchestration of Self-Driving Laboratories

January 7, 2025

Self-Driving Labs (SDLs) combine automated hardware with computational experiment planning tools to reduce the time between experiments and liberate chemists from routine work, allowing them to focus on bigger, more conceptual problems. SDLs thus have the potential to acceleration of chemical research. However, SDLs are often difficult to implement for existing labs. Barriers include financial cost, lack of accessible Application Programming Interfaces (APIs) for chemical hardware, and modularity. Another one is orchestration: the administration of the plethora of tools available to the laboratory users. Unfortunately, existing frameworks lack one of the following key elements: modularity, data collection strategies, and a comprehensive real-life implementation. To address these concerns, this research presents a framework for orchestrating chemical labs, and the automation of laboratory instruments. In addition, implementations are presented to demonstrate the implementation of this framework: A campaign for the synthesis of organic laser molecules, as well as an electrochemical optimization experiment.

For details

Department of Chemistry, University of Toronto Canada

DOI: https://tspace.library.utoronto.ca/handle/1807/138140

Contact us to learn more about this exciting publication:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026