News Picture Generic

The Laboratory of Molecular Simulation (LSMO) at EPFL has selected Chemspeed Technologies’ ISYNTH SWAVE Automated Workstation in order to accelerate their research work in discovering novel nanoporous materials

January 23, 2018

January 2018 - The Laboratory of Molecular Simulation (LSMO) at EPFL Valais Wallis

“The Laboratory of Molecular Simulation (LSMO) at EPFL has selected Chemspeed Technologies in order to accelerate their research work in discovering novel nanoporous materials. The overarching goal of this project is to identify a ‘wonder’ material that can outperform existing materials reported and available in the market for energy, environmental and sensing applications!

High-throughput methods represent a very promising approach for accelerating the discovery of metal-organic frameworks (MOFs) as a large number of automated and integrated reactions can be prepared in one batch by screening a wide variety of parameters: metal source and solvent mixtures, concentrations, ratio between the metal and ligand, pH of the reaction, heating temperature, time and others. The utilization of RoSy (Robotic Synthesiser ISYNTH SWAVE) at EPFL Valais Wallis is an ideal tool for the discovery of new materials as it allows the LSMO researchers to run a series of 50 (or more) simultaneous experiments for the synthesis of MOFs (automated dispensing of solids – ligands, metal salts and liquids with high quality; automated capping and crimping of the reaction vials without manual interference; microwave heating; confirmation of the product formation with the integrated camera). The experimental results (successful and failed) are then utilized to rank each synthetic reaction with the Genetic Algorithms (GAs) – an approach that the computational scientists in LSMO have developed. After this ranking, a set of new synthetic conditions is generated and run experimentally using RoSy. This can lead in multiple generations of MOFs (set of 50 reactions) and it continues until the best conditions are identified. Recent advances from this research activity include the discovery of new MOFs and the optimisation of the synthetic conditions for the synthesis of stable, originally reported as unstable MOFs. Additionally by establishing this robust iterative method, the design and synthesis of specific MOF for the capture / storage of strategically critical gases (CH4, CO2, H2) can be achieved!”

For more information about the capabilities of RoSy and possible collaborations, please contact Kyriakos C. Stylianou at [email protected].

For more information about the solution applied:

{"style":"unordered","items":[{"content":"ISYNTH SWAVE
","items":[]}]}

 

About LSMO at EPFL Valais

https://lsmo.epfl.ch

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025