Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF

January 26, 2023
Featured Article

Nature - Communications Chemistry

The synthesis of metal-organic frameworks (MOFs) is often complex and the desired structure is not always obtained. In this work, we report a methodology that uses a joint machine learning and experimental approach to optimize the synthesis conditions of Al-PMOF (Al2(OH)2TCPP) [H2TCPP = meso-tetra(4-carboxyphenyl)porphine], a promising material for carbon capture applications. Al-PMOF was previously synthesized using a hydrothermal reaction, which gave a low throughput yield due to its relatively long reaction time (16 hours). Here, we use a genetic algorithm to carry out a systematic search for the optimal synthesis conditions and a microwave-based high-throughput robotic platform for the syntheses. We show that, in just two generations, we could obtain excellent crystallinity and yield close to 80% in a much shorter reaction time (50 minutes). Moreover, by analyzing the failed and partially successful experiments, we could identify the most important experimental variables that determine the crystallinity and yield.

For details:

Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF

Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Valais, Switzerland
Nency P. Domingues, Seyed Mohamad Moosavi, Leopold Talirz, Kevin Maik Jablonka, Christopher P. Ireland, Fatmah Mish Ebrahim & Berend Smit

Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
Seyed Mohamad Moosavi

Theory and Simulation of Materials (THEOS), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
Leopold Talirz

Cavendish Laboratory, School of Physical Sciences, University of Cambridge, Cambridge, UK
Fatmah Mish Ebrahim

Communications Chemistry
Volume 5, article number: 170 (2022)
https://doi.org/10.1038/s42004-022-00785-2

For more information about Chemspeed solutions:

ISYNTH SPEEDCHEM

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery
News Picture 1 1 V2
Jan
30

Artificial intelligence-driven autonomous laboratory for accelerating chemical discovery

Autonomous laboratories, also known as self-driving labs, have emerged as a powerful strategy to accelerate chemical discovery. By highly integrating different key parts including artificial intelligence (AI), robotic experimentation systems and automation technologies into a continuous closed-loop cycle, autonomous laboratories can efficiently conduct scientific experiments with minimal human intervention.

Read more about Stable acidic oxygen-evolving catalyst discovery through mixed accelerations
News Picture 1 1 V2
Featured
Jan
30

Stable acidic oxygen-evolving catalyst discovery through mixed accelerations

Ruthenium oxides (RuOx) are promising alternatives to iridium catalysts for the oxygen-evolution reaction in proton-exchange membrane water electrolysis but lack stability in acid. Alloying with other elements can improve stability and performance but enlarges the search space.

Read more about Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose
News Picture 1 1 V2
Featured
Jan
30

Experimental and kinetic study of the microwave-assisted catalytic conversion of glucose

Microwave technology offers rapid, selective, and efficient heating, making it a valuable tool for process intensification. In this context, this study employed microwave energy for rapid reaction optimization and reliable kinetic analysis for the catalytic conversion of glucose. Dehydration (DeH) and retro-aldol condensation (RAC) are two main routes for the catalytic conversion of glucose into valuable platform chemicals such as levulinic acid, methyl lactate, and other byproducts.

© Chemspeed Technologies 2026