Deciphering Complexity in Pd–Catalyzed Cross-Couplings: Side-Product Profiling and Rich Data Analysis of Many Reaction Outcomes Reveals an Intricate Network of Catalytic Cycles

October 11, 2022

In this paper we examine a highly complex Pd-catalyzed reaction system that can form many products – the reaction of two molecules of 2-bromo-N-phenylbenzamide, which affords N-phenyl phenanthridinone as the primary product. The reaction is accompanied by a plethora of side-products, formed through activation of multiple sites, including C-Br, C-C, C-N, C-H and N-H bonds. The reaction is a valuable benchmark for understanding complex reaction systems and networks, from either mechanistic, discovery or safety perspectives. Automated high-throughput experimentation methods, using both batch and flow screening technologies, have enabled a relatively broad reaction space to be explored, particularly in terms of reaction temperatures and different solvents over time, despite the reaction being of a heterogeneous nature. Data analysis of the reaction outcomes (Principal Component Analysis, Correspondence analysis and Heat Map analysis using hierarchical clustering) has allowed us to examine the factors contributing to the variance in product distributions, showing associations between solvents and reaction products. Furthermore, the heat maps have enabled the interactions between products to be assessed and ordered using hierarchical clustering. From these data we connect certain side-products to the major dominant N-phenyl phenanthridinone product, and the post-chemical modification of other side products. Complementary stoichiometric organopalladium studies (primarily using NMR and MS techniques) allowed us to examine the Pd precatalyst activation pathway and gain insights into likely Pd intermediates of the reaction, particularly an oxidative addition intermediate and advanced downstream PdII intermediate following activation of two molecules of 2-bromo-benzamide. Generally, automated reaction screening and advanced data analysis tools are transforming the way we examine catalytic processes. Our research offers a unique and highly complementary approach to revealing important mechanistic data on what is arguably one of the most complex Pd catalyzed transformations known in the chemical literature.

For details: 

Deciphering Complexity in Pd–Catalyzed Cross-Couplings: Side-Product  Profiling and Rich Data Analysis of Many Reaction Outcomes Reveals  an Intricate Network of Catalytic Cycles 

George E. Clarke a, James D. Firth a, Lyndsay A. Ledingham a, Chris S. Horbaczewskyj a, Richard Bourne b, Joshua W. T. Bray a, Poppy L. Martin a, Rebecca Campbell a, Alex Pagett a, Duncan J. MacQuar-rie a, John M. Slattery a, Jason M. Lynam a, Adrian C. Whitwood a, Jessica Milani a, Sam Hart a, Julie Wil-son c and Ian J. S. Fairlamb a 

a Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

b School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, UK

c Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK

For more information about Chemspeed solutions:

FLEX CATSCREEN

ISYNTH CATSCREEN

Contact us to learn more about this exciting article:

https://www.chemspeed.com/contact-us/

Other Recent News

Discover more news articles you might be interested in

Read more about Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion
News Picture 1 1 V2
Oct
14

Complementary and Spatially Resolved Operando Spectroscopic Investigation of Pt/Al₂O₃ and Pt/CeO₂ Catalysts during CO/NO Conversion

The composition of reaction mixtures strongly influences the structural evolution and performance of noble metal-based catalysts. In this work, we compared the effect of the simultaneous presence of CO and NO on the noble metal state and CO oxidation activity of Pt/Al2O3 and Pt/CeO2 catalysts under close-to-stoichiometric conditions using complementary in situ/operando X-ray and infrared spectroscopic techniques.

Read more about Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability
News Picture 1 1 V2
Oct
7

Influence of the CeO₂ Morphology and Initial Pd–Pt Interaction Degree on Catalyst Activity and Stability

Due to its peculiar properties and strong interaction with noble metals, ceria is widely used as a catalyst support for numerous applications. In this work, morphologically pure and highly crystalline ceria nanocubes and nanorods were prepared to systematically investigate both the impact of the support morphology and Pd–Pt interaction degree on the noble metal-support interplay during CO oxidation.

Read more about High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms
News Picture 1 1 V2
Featured
Sep
23

High-throughput RAFT Polymerization via Automated Batch, Increment, and Continuous Flow Platforms

We report an automated strategy to conduct RAFT copolymerizations using a Chemspeed robotic platform capable of executing batch, incremental, and continuous monomer addition workflows under inert conditions. Copolymerizations of oligo(ethylene glycol) acrylate with benzyl acrylate (as a control) and fluorescein o-acrylate were conducted in toluene, THF, and DMF, with reaction progress monitored via ¹H NMR spectroscopy at defined intervals.

© Chemspeed Technologies 2025